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An Improved Seasonal Forecast Product
from Climate Prediction Center (CPC)

ABSTRACT

The prediction of seasonal climate anomalies at useful lead times often inyolves an unfavorable signal-to-noise ra-
tio. The forecasts, while consequently tending to have modest skill, nonetheless have significant utility when packaged
in ways to which users can relate and respond appropriately. This paper presents a reasonable but unprecedented man-
ner in which to issue seasonal climate forecasts and illustrates how implied “tilts of the odds” of the forecasted climate

Yuxiang He, Anthony G. Barnston & David A. Unger
Climate Prediction Center
NCEP/NWS/NOAA
Washington. DC 20233

may be used beneficially by technical as well as nontechnical clients.

1. Introduction

Itis well known that the weather averaged over an
extended period, such as a three-month season, is or-
dinarily able to be predicted in advance only with a
modest level of accuracy (Gilman 1985; Livezey
1990). During the most recent decade progress has
been made in recognizing when opportunities for rela-
tively more confident forecasts of extended period cli-
mate conditions present themselves. A recent example
appeared in the Northern Hemisphere summer and fall
of 1997 when a strong El Nifio had developed and was
virtually certain to persist through the upcoming win-
ter when it would have predictable climate impacts in
portions of North America and elsewhere. The direc-
tor of the Department of Commerce’s Climate Predic-
tion Center (CPC) appeared on national television,
warning that Florida and California would have a rainy
winter 1997/98. While this unprecedented “climate
alert” provoked controversy, the forecast verified fa-
vorably (Changnon 1999; Barnston et al 1999; Mason
etal. 1999).
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Building, Room 604, 5200 Auth Rd., Camp Springs, MD 20746-
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There are other, more subtle, ways in which cli-
mate anomalies have some predictability. Gradual
trends in temperature and precipitation, which may be
due to natural and/or anthropogenic causes, appear for
specific regions and seasons. Forecasts of such a
trend’s continuation are often correct despite a lack
of knowledge of many of the superimposed faster-
acting climate-determining factors, or even the cause
of the trend itself.

The primary reason for the normally low level of
forecast skill is that much of the atmosphere’s natural
variations making up a seasonal average are due to
individual weather events (e.g., fronts, low pressure
systems), as opposed to longer-lived climate tenden-
cies. Weather events are generally only usefully pre-
dictable up to about one week into the future.
However, statistical and physical modeling approaches
can extend a certain amount of predictability out to
much longer ranges based on the more consistent in-
fluences of boundary conditions such as sea surface
temperature (e.g., E1 Nifio or La Nifia) that can tilt the
odds in a specific direction of climate anomaly. While
we cannot say on which day a rainstorm or unseason-
able warmth will occur in a given region 3 months
from now, we may be able to say that the rainfall or
the temperature over the season as a whole is more
likely to be above than below normal. Such a forecast
inherently carries considerable uncertainty.

Because of their normally modest skill, climate
forecasts have not usually been issued in the concrete

1271

Gaussian and symmetric distribution, but skew fitted for precipitation, CR
technical and nontechnical users.
provide more details for present and future applications of the PoE
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Users like, feedbacks from users.
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Impacts of the NAO on U.S. and Canadian Surface Climate; Implications for Seasonal Prediction

Anthony G. Barnston and Yuxiang He
Climate Prediction Center, NCEP/NWS/NOAA, Washington, DC 20233

Using seasonal mean Northern Hemisphere sea level pressure (SLP) and 700 mb height fields, and North American
surface climate data for the 1950-95 period, the North Atlantic Oscillation (NAO) is defined and the associated U.S.
and Canadian surface temperature and precipitation patterns are ined. Associations between the NAO and Atlantic
sea surface temperature (SST) anomalies are inspected, and the combined effects of the NAO and ENSO are discussed.
Finally, the NAO's interannual autocorrelation is examined for NAO prediction potential.

The NAO is a massive pheric pk having wi d surface climate impacts. The strongest
atmospheric pattern in the Northern Hemisphere at nearly all times of the year, the NAO influences large portions of
the North Atlantic, non-western North America and Europe. During the 1950-95 period it has varied at lower frequency
than the ENSO, tending to remain in one phase for several consecutive winters. Rotated principal component (RPC)
analysis is used to define the NAO pattern in the 700 mb height and SLP fields for 1950-95. The resulting patterns for
winter and summer for 700 mb height are shown in Fig. 1, where winter is defined as (DJF+2*JFM+FMA)/4, and
summer as (JJA+2*JAS+ASO)/4.

Autocorrelations of winter-to-winter NAO amplitudes are weakly but consistently positive for lags of 1 to 4 years:
24,10, .11 and .04, respectively. Summer-to-summer NAO amplitudes lack consistent positive autocorrelation. This
low frequency persistence among winters suggests modest skill for 3-season lead seasonal climate forecasts. However,
as shown in Hurrell and Van Loon (1996, Climate Change), positive interannual autocorrelation has not always existed
for running 60-year periods spanning back to 1865 if one uses a two-point SLP index of the NAO (the Azores [Ponta
Delgada] minus Iceland [Stykkisholmur] index). The comparability of the Azores-Iceland index with the RPC amplitude
time series is described by correlation coefficients: the SLP and 700 mb height RPC amplitudes are highly correlated
(.95 in winter, .87 in summer) and the SLP RPC and the Azores-Iceland index are correlated well in winter (.85) but
only moderately (.61) in summer. If there were no changes in observing practices or station locations resulting in
discontinuities or biases in the SLP during 1865-1949, the two-point index in winter can sensibly be used back to 1865,
or concatenated with the RPC amplitudes. We assume that given a choice, a full field pattern produced by an established
technique such as RPC analysis (Fig. 1) is preferable to a two-point index of the NAO. The seasonal change in the
location of the NAO, contracting to the north in summer as compared with winter, is noted in Fig. 1. The northern
migration in summer is substantial in North America and the western Atlantic but only slight in Europe and eastern
Greenland. The 1 'ment is shown in greater detail in Barnston and Livezey (1987, Mon. Wea. Rev.). An
NAO-related center of the same anomaly sign as that of Europe and the eastern U.S. in winter appears over eastern
Mongolia/Manchuria in winter, and is nearly absent in summer (Fig.1).

By inspecting cases in which the amplitude of the 700 mb NAO RPC disagrees with the Azores-Iceland index, the
lower average summer correspondence is found to occur because (1) the summer NAO pattern is less coherent than the
winter pattern, with smaller scale anomalies sometimes overshadowing the NAO signal in the Azores-Iceland index,
and (2) the subtropical center migrates northward to approximately 40-52°N at 25°W longitude in summer (Fig. 1),
making the Azores a less favorable location than in winter to represent the subtropical pole of the NAO.

Simultaneous correlations between the winter 700 mb height-based NAO amplitude and the mainland U.S. and
Canadian mean surface temperature and precipitation for the same weighted winter period are shown in Figs. 2 and 3,
respectively. The winter NAO pattern affects U.S. surface temperature (Fig. 2) most strongly in the Middle Atlantic and
Southeastern states, extending westward into the country’s midsection (southern, central and northwestern plains). The
opposite relationship with temperature anomaly is found in eastern Canada north of 50°N. The effect of the NAO on
precipitation (Fig. 3) is considerably weaker than on temperature. The U.S. Midwest (Kentucky, Ohio, Indiana) as well
as eastern maritime Canada show warm/wet (or cold/dry) associations--opposite of what would be expected on the basis
of the amount of solar radiation received at the surface. The association of warmth with wetness in the U.S. Midwest
in winter has been noted before (e.g. Van den Dool 1988, Utilitarian Atlas; Barnston 1993, NOAA Atlas No. 11m), and
is related to the NAO: The strength of the winter westerlies in the Midwestern U.S. is anomalously weak with a negative
NAO, tending to produce warm/wet weather (infrequent arctic air mass intrusions, Gulf moisture inflow, slow-moving
storms out of Gulf of Mexico or lee of Rockies), and for a positive NAO stronger than normal westerlies produce
cold/dry weather (arctic fronts, and fast-moving, dryer “Alberta clipper” storms).

The specification correlations for the summer surface temperature and precipitation are shown in similar fashion
in Figs. 4 and 5. Comparing Fig. 4 to Fig. 2 for temperature, the effects of the winter-to-summer northward migration
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The Complications of Defining the NAO; Influences on Northern Hemisphere Climate Corr betwee(n WINTER P un)d MO index Corr belween H&\ENTER P) ond NAO index Corr between i ,NATE'R)P and WD index
USA & Canodo urope (Asia

Yuxiang He and Anthony G. Barnston
Climate Prediction Center, NCEP/NWS/NOAA
Washington, DC 20233

This is a continuation of the NAO study presented in last year’s Climate Diagnostics and Prediction Workshop
(Barnston and He, p. 34-37). The North Atlantic Oscillation (NAO) influences the surface climate over an enormous area
including eastern and central North America, much of the North Atlantic, and most of Europe and northern Africa. It is
thus worth examining and, if possible, predicting. Unlike the Pacific/North American (PNA) pattern, the NAO is not
obviously associated with a pattern of tropical or global SST anomaly other than one that it causes itself in the North
Atlantic at 1-2 months’ lag. Again unlike the PNA pattern, the NAO pattern’s definition has uncertainty, depending
noticeably not only on the season, but on the period of record, the averaging period (e.g. 3-month vs. 1-month means), and
the choice of analysis domain. Difficulty in defining the NAO is partly due to the large longitudinal extent, and amorphous
nature, of the southern pole of the pattern. Because rotated principal components analysis (RPCA) yields patterns very
similar to those derived from teleconnections, RPCA is used here to guide the process of defining the NAO. Because the
time series of the NAO amplitude depends strongly on the NAO pattern definition, major diagnostic ambiguities occur for
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some years as a result of differing definitions. w ,L; M L R E EE R I I lI sc.( W MM NE WL ONE WE MEOKEOME X X 0 1}1' WE 19
Corr between SUAER P and NAO index Corr between SUMNER P and NAD index Corr between SUAER P ond NAD index
Figure 1 shows the NAO spatial pattern defined by RPCA when the 1964-96 period is used on Northern Hemisphere (USA & Cunadu) (Europe) (ASIG)
(NH) 700 mb heights for the cold season (after Halpert and Bell, 1997, Bull. Am. Meteor. Soc., S1-S49; hereafter HB97). g

Specifically, 1-month mean data for November, December, January and February are pooled together for this RPCA,
making a sample size of 132 (4 x 33) cases. The time series (shown to right of pattern) is produced by projecting the 700
mb height data for each of the four months of a given winter period onto the pattern and then averaging the four resulting
amplitudes. Amplitudes for 1950-63 were computed even though these years were not used to derive the RPCA pattern.

Figure 2 shows our NAO pattern, defined also by RPCA on NH 700 mb heights, but with the following differences
from HB97’s analysis: (1) The 1950-97 period was used instead of the 1964-96 period, (2) 3-month mean data were used
to form the individual cases instead of 1-month mean data, and (3) the pattern represents the weighted average of the
patterns resulting from RPCAs using Dec-Jan-Feb, Jan-Feb-Mar, and Feb-Mar-Apr input data, using the weights 1-2-1.
The weighted averaging is used to smooth out noticeable differences in the patterns of each of the 3 consecutive running
3-month periods, yielding a presumably more representative, general cold season NAO structure. The time series shown
to the right of the pattern is produced by projecting the 700 mb height anomaly data for the weighted (1-2-1) average of
the 3 seasonal periods onto the spatial pattern. (Note that the the time series ends 1 year later than in Fig. 2 than Fig. 1.)
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Major dif'ferences in poth the spatial pattern and the fx{nplitude time series are found be.tween the two NAO w ”; R E R EEE LR ;1 0K M M G M B MM XEKENE W ME MK WE NE INE N0 E WK K N
definitions. While both versions show the northern center positioned over and around Greenland, important differences - T T T T T T
appear in the southern center: HB97’s southern center stretches along the 40°N latitude circle from the U.S. to B R b R ]

southwestern Europe, while our southern center has a larger longitudinal extent and is noticeably farther south in the
western portion (near 33°N in western Atlantic) and farther north in the eastern portion (near 50°N near Poland). The
loadings over Europe are much stronger than those of HB97’s pattern, and a strong secondary southern center appears near
Mongolia that is absent in HB97’s pattern. The last two features appear in HB97’s RPCA as a separate mode referred to
as the Polar Eurasian pattern, which has its strongest center over the North Pole and northern Greenland. These differences

 TENPERATIRE . TEPERATURE
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in NAO definition lead to substantial differences in the amplitude time series: e.g. the HB97 pattern has a strong negative

(59,76,89,%,92,93,07) (65,58,60,66,69,70,79)
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amplitude for winter 1995-96 (shown as the 1996 winter in Fig. 1), while our pattern indicates an only slightly negative - These
amplitude for the 1996 winter. Major discrepancies are also found between the time series for other years. ! figures
il
are
Similar RPCA sensitivity tests for the Pacific/North American (PNA) pattern reveal considerably less pattern Fig, g ™ condensed.
dependency on the period of the data record and the averaging period (1-month vs. 3-month), as also evidenced in most (1] See text.

of the PNA-related literature over the last two decades. We conclude that while, there is some instability inherent in the
RPCA approach, a major difference between the PNA and the NAO patterns is that the NAO is more loosely defined than
the PNA. This may be related to the NAO’s larger longitudinal extent, and its being largely a manifestation of the internal Assessnant
dynamics of the atmosphere as opposed to being demonstrably forced by SST boundary conditions as the PNA has been o
L}
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the next steps for this study (e.g., assess the statistical significance of the composite, detect
remote teleconnection of NAO in the southern Hemisphere and the Tropics)
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Use of Discriminant Analysis for Seasonal Forecasts
of Surface Climate in the United States

Yuxiang He and Anthony G. Barnston
Climate Prediction Center, NCEPINWS/NOAA
Washington, DC 20233

The Climate Prediction Center presently uses a mixture of empirical tools and a
dynamical tool to develop its long -lead forecasts for U.S. 3-month mean surface climate.
Ong of the empirical tools 15 Canonical Correlation Analysis (CCA), which models
predictor-predictand pattern relationships linearly with respect to both the predictor and the
predictand. This constrains responses to equal-but opposite predictor anomalies to be equal-
but-opposite predictand anomalies. For example, the temperature anomalies to a warm
ENSO event 15 the same as that fo a cold ENSO event, but with reversed sign. In a nonlinear
dynamical system such as our ooean-aimosphere system, we seek an empirical model that
can accommodate some asymmetry in predictor-predictand relationships while minimizing
the potentil for severe data overfiting in the fairy short recent (~40-vear) period of qualiy
predictor SST observations.

Discriminant analysis (DA) is a multivariate statistical model that identifies distinct
clusters of anomalies in a set of predictors that discrimnate linearly maximally among
several categories of  single predictand. Differences from CCA iclude; (1) Predictands are
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Predictor anomaly clusters leading to each of the three predictand
categories of temperature for Shreveport, LLouisiana, at 10 month lead

catch some info for nonlinearity and asymmetry
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(1) 700MB (PNA) ANOMALY FORECAST USING CCA
0.5-month lead (JJA 97)
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Developed a detrended (High Frequency/Low Frequency) CCA tool for CPC climate prediction for US
with a nine year centered running mean applied to obtain the low frequency in consistent with OCN
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CPC’s Pacific Region Activities

(1) January 1995, CPC began to issue the climate outlooks (Temperature & Precipitation),
13 leads with half-month lead time up to one year in advance for Hawaii (CCA, OCN, CMP)
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The demands for climate information and products over the Pacific region, especially Hawaii and the USAPI, have dramatically increased during the last two decades because of the
Importance of accurate climate information for public safety/disaster management, freshwater resources, public health, ecosystems, and biocultural resources.

NWS Pacific Region/Department of Interior provided 3 years funding (1996-1998) to support CPC’s activities for the climate forecasting (especially for the

long-range precipitation forecasting) for the Pacific region; users and partners/available tools, user feedback , leeward/windward, trade wind...,

designed first cpc official temperature and precipitation for Hawaii in January 1995.
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ABSTRACT

A potentially operational system for 3-month total precipitation forecasts for island stations in the tropical
Pacific has been developed at NOAA’s Climate Prediction Center using the statistical method of canonical
correlation analysis (CCA). Routine issuance of the forecasts could begin during 1996; presently they are issued
experimentally. The levels and sources of predictive skills have been estimated at lead times of up to one year,
using a cross-validation design. The predictor fields, in order of their predictive value, are quasi-global sea
surface temperature, Northern Hemisphere 700-mb height, and prior values of the predictand precipitation itself.
Four consecutive 3-month predictor periods are used to detect evolving as well as steady-state conditions.

Modest forecast skills are realized for most seasons of the year; however, moderate skills (correlation > 0.5)
are found for certain stations in the northern Tropics at lead times of 3 months or less in late northern winter,
especially in the western Pacific. CCA generally outperforms persistence, even at short leads. The El Nifio—
Southern Oscillation (ENSO) phenomenon is found to play the dominant role in the precipitation variability at
many tropical Pacific islands. During especially the late northern winter of mature warm (cold) episodes, pre-

ipitation is supp 1 (enh d)inakh hoe-shaped region surrounding (to the north, west, south) the
central and eastern equatorial zone, which is anomalously wet (dry).

A secondary source of predictive skill, most important for northern summer, is a pattern with like-signed SST
anomalies over the Tropics of all three ocean basins. While this pattern may encompass ENSO episodes, it varies
at lower freq ies than the ENSO pt on its own.

Reprinted from JOURNAL OF CLIMATE, Vol. 9, No. 10, October 1996
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Skill of Canonical Correlation Analysis Forecasts of 3-Month Mean
Surface Climate in Hawaii and Alaska

ANTHONY G. BARNSTON AND YUXIANG HE
Climate Prediction Center, National Centers for Environmental Prediction, NWS/NOAA, Washington, D.C.
(Manuscript received 21 June 1995, in final form 8 April 1996)

ABSTRACT

Statistical short-term climate predictive skills and their sources for 3-month mean local surface climate (tem-
perature and precipitation) in Hawaii and Alaska have been explored at lead times of up to one year using a
canonical correlation analysis (CCA). Four consecutive 3-month predictor periods are followed by a variable
lead time and then a single 3-month predictand period. Predictor fields are quasi-global sea surface temperature,
Northern Hemisphere 700-mb height, and prior values of the predictand field itself. Forecast skill is estimated
using cross-validation.

Short-term global climate fluctuations such as the El Nifio-Southern Oscillation (ENSO) phenomenon are found
to play an important role in the climate variability in Hawaii and the southern half of Alaska. During the late winter
and spring of mature warm (cold) ENSO events, Hawaii tends to be anomalously warm and dry (wet and cool),
while southern Alaska tends to be warm (cold). Hawaii's responses occur more strongly the year after a mature
ENSO event rather than the year of the event, even if the opposite phase of ENSO has already begun. Pe; nce
is the best seasonal temperature prediction for Hawaii at short leads. Winter and spring temperature ( precipitation)
can be predicted up to one year (a few months) in advance with modest but usable skill for Hawaii, where
temperature forecasts are generally more skillful. Southern Alaska has temperature prediction possibilities up to 7-
10 months in advance. While Alaskan seasonal precipitation prediction is poor on the large spatial scale, forecasts

1. Introduction

The potential utility of forecasts of seasonal precip-
itation anomalies on many of the populated tropical
Pacific islands is clear, given their agricultural and
otherwise water-dependent economies. Past observa-
tional studies (e.g., Ropelewski and Halpert 1987,
1996) have indicated a strong response in the tropical
Pacific to the El Nifio—Southern Oscillation (ENSO)
phenomenon. This is reasonable in view of the close
proximity of the ENSO-related SST anomalies and,
more broadly, all aspects of the Walker circulation
(Walker and Bliss 1932) that are influenced by ENSO
episodes. The need for useful forecasts, coupled with
an ability to forecast ENSO episodes with modest but
usable skill (Barnston et al. 1994), make this region a
logical target for routine operational forecasts. This
study provides a base for such forecasting at the Cli-
mate Prediction Center (CPC), National Centers for
Environmental Prediction (NCEP), which could begin
operationally during 1996.

Corresponding author address: Yuxiang He, Climate Prediction
Center, National Centers for Environmental Prediction, W/NP51
WWB Room 604, Washington, DC 20233.

E-mail: lukehe@hp21.wwb.noaa.gov

Because of the strength and reliability of ENSO-re-
lated precipitation responses in tropical regions, either
dynamical or empirical forecast approaches would be
expected to have success out to the first three to five
months of lead, due to their moderate ability to forecast
the ENSO itself (Barnston et al. 1994). Using a dy-
namical approach, for example, success has been dem-
onstrated in Graham (1994 ) for northeast Brazil using
SST persisted from initialization time. Using an em-
pirical approach, many portions of the Tropics are rel-
atively well forecast using canonical correlation anal-
ysis (CCA) (Barnston and Smith 1996). Because
dynamical and empirical approaches deliver approxi-
mately the same skill levels at our present state of
knowledge, we opt to use an empirical approach here
for practical reasons. We choose CCA, both because of
its skill capability and its extensive set of diagnostics
that offer some insight into the physical bases of the
relationships used to form the predictions.

CCA is a multivariate linear statistical model that
defines predictive relationships between evolving
large-scale patterns in the Northern Hemisphere (NH)
700-mb circulation and near-global sea surface tem-
perature (SST) fields (predictors), and subsequent pat-
terns in the seasonal mean tropical Pacific precipitation.
The precipitation anomalies occurring during the pre-
dictor periods.is used as still another source of infor-

on terrain-dependent local scales may be more fruitful using methods other than CCA.

1. Introduction

The demand for prediction of Hawaiian and Alaskan
surface climate has risen in the last decade. This study
provides a base for the operational seasonal prediction for
both states at the Climate Prediction Center (CPC), Na-
tional Centers For Environmental Prediction (NCEP) in
early 1995. Canonical correlation analysis (CCA ), a mul-
tivariate linear statistical model, is used to describe pre-
dictive relationships between evolving large-scale pat-
terns in the Northern Hemisphere (NH) 700-mb circu-
lation and near-global sea surface temperature (SST)
fields (predictors) and subsequent patterns in the Hawai-
ian and Alaskan seasonal mean surface temperature and
precipitation. A variable lead time is placed between a
series of four consecutive 3-month predictor periods and
a single 3-month predictand period. Objective evaluation
of the sources and the strength of such predictive rela-
tionships is our primary motivation.

a. Hawaii

Fluctuations of Hawaiian surface climate have re-
ceived much attention because of their impact on ag-

Corresponding author address: Anthony G. Barnston, Climate
Prediction Center, National Centers for Environmental Prediction,
WI/NP51 WWB Room 604, Washington, DC 20233.

riculture, tourism, construction, and certain local in-
dustries. Drought has been a recurrent and troublesome
problem for the state, often resulting in low crop yield
and the need for strict water rationing. Seasonal pre-
diction of rainfall has been recognized as an important
element for strategic water resources planning and
management for the Hawaiian decision maker (Chu
and He 1994).

Several investigations have sought to identify rela-
tionships between Hawaiian rainfall and global short-
term climatic phenomena—especially the El Nifio—
Southern Oscillation (ENSO). As early as 1932, Wal-
ker and Bliss found that rainfall in the Hawaiian Islands
tended to be below (above) normal during the negative
(positive) phase of the Southern Oscillation (SO).
Meisner (1976), as well as Wright (1979), found a
negative correlation between the SST in the central
and/or equatorial eastern Pacific and winter rainfall in
Hawaii. Lyons (1982) showed that most El Nifio win-
ters were dry in Hawaii. Chu (1989) claimed that while
the Southern Oscillation index (SOI) in spring is not
significantly correlated with rainfall in the following
seasons, the summer and autumn SOI is positively cor-
related with rainfall in the following winter or spring.

Horel and Wallace (1981) proposed a model relating
dryness in the Hawaiian Islands with tropical Pacific
SST. They assumed that during a northern winter char-
acterized by a warm SST in the central and eastern
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Fic. 5. SST predictor CCA loadings for mode 1 for prediction of
Jan-Feb-Mar tropical Pacific precipitation at 1-month lead. Panels (a),
(b), (c), and (d) show loadings for the first (Dec-Jan-Feb), second
(Mar-Apr-Mdy), third (Jun-Jul-Aug), and fourth (Sep-Oct-Nov) pre-
dictor periods, respectively. Units are relative.

with one element per year, are called the predictor and
predictand canonical components.

d. Lead times

The lead time, or amount of time ‘‘skipped’” be-
tween the end of the latest predictor season and the
beginning of the predictand season, is varied from 1 to
13 months by 1-month increments. A forecast whose
target period begins at the time of the forecast is defined
as having a zero lead. The lead time structure used here
is illustrated in Fig. 3 of Barnston (1994).

e. Verification

Overfitting of random variability in the relatively
short total period of record (40 years) can create arti-
ficial skill. To control for overfitting, cross validation
(Michaelsen 1987) is used in evaluating forecast skill.
Each of the 39 years from 1956 to 1994 is held out in
turn, and CCA is used to develop a prediction model
using the remaining 38 years. (Note that there are only
39 years to use for hindcasting, because the sequence

HE AND BARNSTON 2026

of predictors uses up the prior year, making 1955 un-
available as a predictand year.) The withdrawn year
plays no part in any of the preparatory (e.g., pre-EOF)
steps or the CCA. The predictor data for the withheld
year are then projected onto the predictor CCA loading
patterns, and predictand values are generated and ver-
ified against observed data for the withheld year. The
observed data are expressed in terms of the climatology
formed without the withheld year—that is, the clima-
tology is redefined each time a new year is held out as
the forecast target. A temporal correlation between the
forecasts and the observations is used as the verification
measure, leading to an estimation of the percentage of
variance explained by the CCA forecasts.

Recent research has indicated that while cross va' -
dation has been regarded as a major step in controll’ 1g
for artificial skill, it may underestimate true skill when

skill is low (Barnston and Van den Dool 1993), and"

also may overestimate skill in certain circumstances,
such as when using multiple regression or especially
screening regression (Unger 1996). Thus, we empha-
size that the skills reported here are our best estimates
of what to expect for forecasts on truly independent
(future) cases. In a recent comparison betweer cross-
validated skill and simulated real time skill in which
only forward-looking forecasts were allowed (Barns-
ton et al. 1994), CCA appeared to produce unbiased
skill estimates using cross validation.

7005“?@%0{%5. ING

FIG. 6. As in Fig. 5 except for 700-mb predictor loadings for mode
1 for the fourth predictor period (Sep-Oct-Nov) for forecasts of Jan-
Feb-Mar tropical Pacific precipitation.

2027 JOURNAL OF CLIMATE VoLumE 9

Principal Predictand Loading Pattern
(Mode 1 — JFM)

e R e s L e ) e
?20E 130E  140E 150 160E 170E 180  170W 160W 150W 140N 1308 120W
FiG. 7. The principal predictand loading pattern for mode 1 for the prediction
of Jan-Feb-Mar tropical Pacific precipitation at 1-month lead.

Persistence forecasts are used as a competitor for the damping (or, equivalently, an absence of damping).
CCA forecasts. These persist the predictand values dur-  This use of a regression-like design for the persistence
ing the fourth predictor period. The persistence fore- forecasts mimics that of the CCA.
casts are cross validated to put them on an equal design
footing with the CCA forecasts. To cross validate per- 4, Results
sistence forecasts, they are damped in accordance with
the autocorrelation (i.., correlation skill of persist- __The seasonal march of CCA correlation skill for the
ence) based on all years except for the forecast target 33 tropical Pacific stations is shown in Fig. 2 for 1-, 4-,
year. This implies a slightly diffcrent damping for each
year that is held out. Because the correlation is used as
the verification measure for the final set of all years’
damped persistence forecasts, the variable damping ‘4

CCA FORECASTS for JFM

used in cross-validating slightly decreases the persist- :
ence verification scores as compared with uniform 23 BTt |
Canonical Compone it Time Series a
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Year FiG. 9. Yearly time series of forecasts and observations for Yap

Island in the northwestern tropical Pacific (9°N, 138°E) Jan-Feb-Mar

FiG. 8. The canonical component predictor time series for mode 1 ~ standardized precipitation anomaly. Forecasts made at 1-month lead

for the prediction of Jan-Feb-Mar tropical Pacific precipitatioa. Sym-  (i.e., at end of November; dashed line) and observations (solid line)

bols along the curve denote warm and cold ENSO events, defined by are shown; correlation is 0.73. Forecasts are inflated to make their
the year prior to the late northem winter being forecast. variance equal to that of the observations.



January 1996, Seasonal rainfall forecast for US-Affiliated Pacifc islands are published
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EXPERIMENTAL LONG-LEAD

FORECAST BULLETIN

SEPTEMBER 1997
Vol. 6, No. 3

National Weather Service

National Centers for Environmental Prediction

CLIMATE PREDICTION CENTER

Precipitation Forecasts for the Tropical Pacific Islands
Using Canonical Correlation Analysis (CCA)

contributed by Yuxiang He and Anthony Barnston

Climate Prediction Center, NOAA, Camp Springs, Maryland

Canonical correlation analysis (CCA), identifies
linear relationships between multicomponent predictors
and multicomponent predictands. In practice, these are
often pattern-to-pattern relationships in space and/or
time. Like sxmpﬁer forms of linear regression, CCA
minimizes squared errors in hindcasting the predictands
from the predictors

During the last decade, CCA has begun being used
increasingly in the atmospheric sciences (e.g. Barnett
and Preisendorfer 1987; Graham et al. 1987a, 1987b;
Barnston and Ropelewski 1992; Barnston 1994,
Barnston and He 1996).

Here, CCA is used to predict 3-month
precipitation anomalies in the Pacific Islands out to a
ear in advance, as described in He and Barnston
(1996). Because rainfall in the tropical and subtropical
Pacific is strongly related to ENSO (Ropelewski and
Halpert 1987, 1996), it is reasonable to expect usable
skill in seasonal Pacific rainfall forecasts, and thus
worthwhile to establish a real-time prediction system
for the benefit of agricultural and commercial inferests
in the Pacific Islands. The experimental forecasts shown
in this quarterly Bulletin are provided a monthly basis
on the Internet at address: http://nic.fb4.noaa.gov:80
/products/predic-tions/experimental/pacific.

The predictor fields used for the forecasts include
quasi-global sea surface temperature (SST), Northern
Hemisphere 700 mb geopotential height, and the
predictand precipitation 1Lse§)f(33 island stations) at an
earlier time. CCA sensitivity experiments indicate that
the SST field is the most valuable predictor field, with
700 mb heights and prior frecnpnauon somewhat
helpful. Further details about the skills, the underlying
relationships, and the predictors are provided in He and
Barnston (1996). The set of predictors is configured as
four consecutive 3-month periods prior to the time of
the forecast, followed by a variable lead time, and then
a single 3-month predictand period. The predictand
includes 3-month total rainfall at 33 Pacific Island
stations within 25°N-30°S, including 4 Hawaiian
stations (Fig. 1). The lead time is defined as the time
between the end of the final (fourth) predictor period
(.e., the time of the forecast) and the beginning of the
3-month predictand period.

The expected skill of the forecasts was estimated
using 1-year-out cross-validation (see He and Barnston
1996). These skill estimates indicated that at 1 month
lead time the highest correlation skill across the Pacific
Islands occurs in Jan-Feb-Mar at 0.44 (0.29) averaged
over all stations north (south) of the equator, and the
lowest occurs from September through December at
about 0.15 (0.30) for stations north (south) of the
equator. At four months lead, skills are only slightly
lower except for the Jan-Feb-Mar average skill north of

v

the equator which drops significantly to 0.26.

Figure 2 shows forecasts of the standardized
precipitation anomaly (X100) for 33 Pacific Island
stations using data through August 1997. The top panel
shows the forecast for Oct-Nov-Dec 1997 (1 month
lead), the middle panel for Jan-Feb-Mar 1998 (4
months lead), and the bottom for Apr-May-Jun (7
months lead). The expected skill for these forecasts,
based on cross-validation, is shown by the size of the
numerals (as opposed to their value, which is the
forecast itself): Small numerals indicate low skill
(correlation below 0.3), medium sized numerals usable
but modest skill (correlation between 0.3 and 0.45 ), and
large numerals moderate or better skill (0.45 and
higher). Dryness at off-equator locations, and enhanced
rainfall at the stations closest to the equator near and
east of the date line, is being forecast; this is especially
clear in the Jan-Feb-Mar 1998 forecast. This pattern is
associated with the El Nifio conditions that developed
in spring 1997, which the CCA implicitly expects to
continue at high strength through early 1998. Skill is
mainly modest, but is moderately high at some of the
stations whose influences from ENSO is strongest.
Skills would be higher if most years were either warm
or cold ENSO years; the presence of many neutral years
enables rainfall variations of random or unknown cause
to lower the overall correlation skill. If much of the
existent skill comes from ENSO (which appears likely),
and if we are quite sure there will be a warm ENSO
event in winter 1997-98, then our confidence in the
qualitative pattern shown in this forecast should be
higher than that reflected in skills based on all years.

More detailed forecasts for 9 U.S.-affiliated and
18 non-U .S -affiliated Pacific Island stations are shown
in Fig. 3. In Fig. 3, long-lead rainfall forecasts from 1
to 13 seasons lead are shown (solid bars), along with
their expected skills (lines). The horizontal axis reflects
the lead time, whose corresponding actual target period
for this forecast is mdlcutedpin the legend along the top
of the figure (e.g. 1=Oct-Nov-Dec 1997). The same
ordinate scale is used for both forecasts and skills
(standardized anomaly and correlation, respectively).
Sometimes skill may increase as the lead is increased
because a more forecastable target season has been
reached. The forecasts and their skills differ not only
due to general location differences the Pacific basin, but
also differences in orientation with respect to the local
orography (if any).

Dry conditions are forecast at many of the U.S.
affiliated stations for boreal winter 1997-98 through
spring 1998, due to the strong El Nifio that is
expected to dominate the climate. Among stations
shown here, dryness is especially marked at Johnston,
Guam, Koror and Yap. Skill tends to peak during winter
or spring at these locations. South of the equator at




Stondard Anomal ies/Skill

bodd

Stondard Anomalfes/Skill

RIS

Stondard Anomalles/Skill

bbb

LONG—LEAD RAINFAL

1-FMAS9 2-MAMO9 3—-AMJ9S 4-MJJ99 5-JJAS9 6-JAS99 7-AS099

(a) HILO, HAWAII

L PREDICTION
8-SON99 9-ONDS9 10-NDJ99 11-DJF2000 12—JFM2000 13—FMA2000

FOR HAWAI |

Stondard Anomal fes/Skill

b) KAHULUI, HAWAI I

0 PSR ANIoING, 8 9 101112 13 14 o
Prediction Season
o () ‘Hmimum,i HAYIAI:I

g g

i i

=

H 0.2

i 0.4

7 : : “-0.8
e - -0.8
9 10 11 12 13 14

0 2NN SR AT ST Gl /¢

Prediction Season

LONG—LEAD RAINFALL PREDICTION FOR US—AFFILIATED PACIFIC

3 4 5 6 7
Prediction

8 9
Seaso

10 1112 13
n

14

(d) LIHUE, HAWAII

OTEIN
>

4

| SLANDS

1-OND99 2-NDJ99 3-DJF2000 4-JFM2000 5—FMA2000 6-MAM2000 7-AMJ2000 8-MJJ2000 9-JJA2000 10-JAS2000 11-ASO2000 12-SON2000 13-OND2000

5 7 8 9 10111213 14
rediction Season

Prediction Season

Prediction Season

8 & o.n-—mﬁ_—@—L S os ‘KORORVISO‘
61- s Z 06 t
gl $ i $
4 E-04 3
6 § —0.61- o T § T i
o BEE e Rl R ! @ | 15 e
12345678391011121314 1234567801011121314 1234567891011121314
Prediction Season Prediction Season Prediction Season
a ALEIN MISSILE RGN 7 MAJURO WSO AP_ g POHNPE|_WSO
64 i = s E O =
: & H
2 = =
ot H g
21 <
v v
.41 5 H
.61 + § =0.64 + t § =1 3
Al L el ;| sl i i i @ | Sl
T0T234567801011121314 R EE R R RARETEET) 1234567806101121314

Prediction Season

Prediction Season

Prediction Seoson

0 WAKE |SLAND WSO AP ola YAP_ISLAND WSO AP 0 CHUUK_(TRUK)
61- S R S ! - Z 0.6 : !
+ £ o4

2 ¥ = 0.24

04 g £ of

24 - 0.2 2 -0.21-

41 504 T 0.4

£
.61~ _ §0.64-1— = g 0.6 3 o g o
e 8 s e EE | @ -0.8 ES
12345678 091011121314 12345678 01001121314 1234567 10111213 14

Prediction Secson



NCEP/Climate Prediction Center Atlas No. 5

fwg A Precipitation Climatology for Stations
in the Tropical Pacific Basin;
Effects of ENSO

Yuxiang He

Anthony G. Barnston

Climate Prediction Center

National Centers for Environmental Prediction
Camp Springs, Md 20746

Alan C. Hilton, LT/NOAA
Pacific ENSO Applications Center
Honolulu, Hi 96822

February 1998

U.S. DEPARTMENT OF COMMERCE

William Daley, Secretary

National Oceanic and Atmospheric Administration
Dr. D. James Baker, Under Secretary

National Weather Service

Robert Winokur, Assistant Administrator

In 1998, A comprehensive Pacific Rainfall Atlas was published through the cooperative work among CPC, PEAC, and other tropical Pacific islands.

Motivation

¥ To give users a good picture about the drought intensity and frequency, seasonal/interannual/decadal rainfall variability, effect of ENSO for the Pacific region.
nTo establish a solid background and have a good reference for the long-lead rainfall forecast for Pacific islands.
#2003, NOAA administrator Admiral Lautenbacher to meet Hawaii Governor Lingle



RAINFALL STATIONS FOR PACIFIC ISLANDS
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NCEP/Climate Prediction Center ATLAS No. S

A Precipitation Climatology for Stations in the Tropical Basin; Effects of ENSO
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Annual Rainfall Cycle

Seasonal Rainfall for Honolulu

RAINFALL ST S FOR PACIFIC ISLANDS
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SEASONAL PRECIPITATION FOR HONOLULU (mm)
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From March-Apr-May 1995 through May-Jun-Jul 1996 (spanning 15 running 3 month periods),

the rainfall was at or below the median. (blue line -25% & 75%ile, brown line -50%ile)
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Rainfall for Kahului
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Short-term climate fluctuations, such as the ENSO phenomenon and its recurring warm and cold episodes,
are found to play an important role in the climate variability over Hawaii and the tropical Pacific region.
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Raintall for Kahului
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ENSO composite rainfall for Kahului, Hawaii. Rainfall ENSO composite. Dotted line — climatological mean;
Solid line — rainfall composite of warm ENSO events; Dashed line — rainfall composite of cold ENSO events;
Hollow square — rainfall warm ENSO composite passing the significant test at the 0.05 level;. Solid square —
rainfall cold ENSO composite passing the significant test at the 0.05 level.

Near the time of the mature episode boreal winter at Kahului, warm episodes are significantly associated with
below normal precipitation in Dec-Jan-Feb, Jan-Feb-Mar, Feb-Mar-Apr and Mar-Apr-May. Cold episodes associate
significantly with enhanced rainfall only during Feb-Mar-Apr and Mar-Apr-May.
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Brown line — OCN (1995-2009)- trend
Dashed Line — Long-Term Climatology

Red line — rainfall composite of warm ENSO events;
Blue line — rainfall composite of cold ENSO events




Water resource management
Disaster management
Agriculture

Health

Fisheries

Local ecosystems

Tourism

Economic growth

(user-friendly website
specify for tropical Pacific
islands so that users can
easily access the

climate information)

National Weather Service ‘

Climate Prediction Ceri"_ r

Home Site Map News Organization

Traical Pacefie Ylimate
Tnfornation & Predictinn Syotem
(TPCIPS)

Our Mission
Who We Are

Contact Us
CPC Information
CPCWeb Team

The Climate Prediction Center provides rainfall forecasts, data sets, and
assessments of climate impacts of El Nino and La Nina on Pacific Islands,
primarily focusing on Hawaii and the U.S-Affiliated Islands.

W An Updated Rainfall Analysis for Hawaii and US-affiliated Islands

Outlooks (Forecasts)

o Tropical Pacific Rainfall Forecast

¢ ENSO Farecast

o Tropical Pacific Sea Level Analysis and Forecast
o Pacific Climate Telecanferences

Monitoring and Data

o ENSO Effect
o Tropical Pacific Climate Information
e SST

Qutreach

o Paper & Atlas
¢ Research Projects
o Partners and Useful Links

FOR MORE INFORMATION, CONTACT:
Luke He: Email: luke.he@noaa.qov




Pacific ENSO Application Center (PEAC)
Regional Workshop:
A Look to the Future

ELNIND IS HERE

KASCHTIK HNCKI PIHL

CONSERYE WATER

June 1-3, 2004
East-West Center, Honolulu, Hawaii

Sponsored by:

East-West Center
NOAA, Office of Global Programs
(NOAA Award #NA030AR4310089)
NOAA, National Weather Service Pacific Region

Training, proposal, working group, steering committee

Pacific Climate Information System
Building Integrated Partnerships for End-to-End Climate Services

e B 83 —

VISION

Resilient and sustainable Pacific communities using climate information to manage risks
and support practical decision-making in the context of climate variability and change.

A R A TG
Mission Objectives

Clarify climate information needs to guide education,
outreach, observations, research assessment; products
and services;

Provide access to critical data, research and new climate
information products and services;

Translate research and assessment results into useful and usable climate

information; Guiding Principles
Interpret global and regional climate forecasts and projections for local The concept for the Pacific Climate
applications; Information System (PaCIS) is to
create an integrated program of
Enhance regional and local capabilities to assessment, research, observations,
manage risks and support sustainable operations, outreach, and education
development in the context of climate implemented through a network of climate
variability and science, services and applications experts
change; and including users, researchers, and
" Enhance 'gog:immeni;:dfﬁﬁ. m;dm;edms
CERTTE collaboration DI LS
s il ek gl among national, over a decade of climate experience in
Amones Mg regional and the region.

international institutions and programs involved in

) ; . ; ® Early and continuous partnership and
climate information services.

collaboration with users to support
shared learning and joint problem-
Program Elements sdv.'-ff;. g
To address the mission objectives, PaCIS will be Building trust and credibility is a long-
implemented in the context of three program term endeavor,
elements: o Sustained education, outreach and
« Education, Outreach and User Information Needs dialogue activities play critical roles.
* Operational Climate Observations, Products and Services ®  Forecasts or projections of future
conditions must be set in an
* Research and Assessment appropriate problem, application,
Implementation of these program elements will be quided by a PaCIS historical, tradtional, and decision-
steering committee comprising representatives of NOAA climate programs, making context.
partners in other federal agencies and universities, representatives of key o (Climate information to address today's
user communities in Pacific Island jurisdictions, and experts in climate problems and support long-term
science decision-support and operational services. adaptation to changing climate
conditions,




(1) Monthly Pacific ENSO Application Center Climate Audio Conference (8:30pm-

9:30pm)

Participants: PEAC, CPC, IRI, University of Hawaii, University of Guam, International Pacific
Research Center, NOAA NWS-Pacific Region WSFO (Honolulu, Guam, Chuck, Majuro,
American Samoa, Phone....)

(2) Monthly Island Climate Teleconference (7:30pm-8:30pm)

Participants: New Zealand (NIWA), Australia (BoM) and other Southern Hemispheric island
nations (Fiji, New Caledonia...), IRI, Pacific ENSO Application Center, CPC.
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ISSUED: FEBRUARY 3, 2004

A Bulletin of the Pacific El Nifio-S h
University of Guam « University of Hawai

Oscillation (ENSO) A
OAA -« Pacific Basin Development Council

Pacific ENSO Update

The Pacific ENSO Update is a bulletin of the

Pacific El Nifio-Southern Oscillation (ENSO)

Applications Center, a center established to
conduct research & produce information products
on climate variability related to the ENSO climate
cyele in the U.S.-affiliated Pacific Islands (USAPI).
The bulletin is intended to supply information for

the benefit of those involved in such climate-

sensitive sectors as civil defense, resource
and devel ing in the
various jurisdictions of the USAPIL

The Pacific ENSO Update is produced quarterly,
with additional special reports on important

CURRENT CONDITIONS

Atmospheric circulation patterns and the oceanic sea
surface tcmpcrnmrc in the cen(ral Pacific and Micronesia
indicate the region remains a phase that is neither El
o nor La a: a condition recognized as El Niiio
Neutral. During El Nifio Neutral conditions, localized extreme
weather events such as typhoons, flash floods, extreme dryness,
and other types of ions (ex.
hazardous surf) may occur. However, it is often easier to predict
these events during El Nifio or La Nifia conditions.

The widespread dryness predicted for Mi ia through the
first six months 0f 2003 did not materialize, and most locations
received adequate rainfall. Annual rainfall during 2003 was
near normal in most locations (Figure 2), with some large
monthly values and large month-to-month variations. The values
for the 2003 annual rainfall in Micronesia ranged from

i 85% of normal at some atolls of Yap State and

changes in ENSO itions as may be req
JSfrom time to time.

For more information about this issue, please contact:

Nicole Colasacco or Rebecca Schneider
Editors, Pacific ENSO Update,
Pacific ENSO Applications Center
University of Hawaii, Dept. of Meteorology
2525 Correa Road, HIG #350
Honolulu, HI 96822
Tel: 808-956-2324 Fax:
WWW: t.hawai

56-2877

html

E-mail:
nicole.colasacco@noaa.gov
rsschnei@hawaii.edu

Publication of the Pacific ENSO Update is supported in

part by the National Oceanic and Atmospheric

Administration (NOAA), National Weather Service-Pacific

Region Headquarters under contract no. ABI33W-02-SE-

056. The views expressed herein are those of the author(s)

and do not necessarily reflect the views of NOA, any of its
ies, or cooperatir

Pohnpcl State, to over 120% of normal at locations in Palau,
Yap Island, Guam, and Kapingamarangi.

During 2003, most of Micronesia enjoyed a welcome break
from the numerous tropical storms and typhoons that plagued
the region in 2002. This was shattered in November 2003, when
Typhoon Lupit severely affected islands and atolls in Chuuk State
and Yap State. Lupit was the final typhoon 0f2003 in the western
North Pacific (WNP) basin. The final tropical cyclone of 2003
in the WNP basin was Tropical Storm 27W (as numbered by
the Joint Typhoon Warning Center). TS 27W was not named
by the Japan Meteorological Agency. This weak tropical storm
pdssl.d north of Yap and Pnluu Jjust before Christmas Day, then

i in the Philippi i at the end of D«

Since the demise of I‘mpncnl Storm 27W, there have been no
other numbered or named tropical cyclones in the WNP. In the
South Pacific, however, a very intense (Category 5) hurricane
(07P), named Heta by the Fiji Tropical Cyclone Warning Center,
passed close to Samoa during the first week of January 2004.
Hurricane Heta later ran over the small island nation of Niue
causing substantial destruction of property and loss of life.

cont'd on page 2

5 March 2004

Contributors
Australian Bureau of
Meteorology
Meteo France
Fiji Met Service
Samoa Meteorological Service
- NOAA National Weather
. Service
NOAA Climate Prediction
Centre, CPC
International Research Institute
for Climate Prediction, IRICP
European Centre for Medium
Range Weather Forecasts,
CMWF

| UK Met Office
World Meteorological
Organisation, WMO

" Produced by the National
Institute of Wat nd

Atmospheric Researc|
New Zealand

The Island

Climate Updat

An overview of the present climate in the tropical South Pacific, with an outlook for the

coming months, to assist in dissemination of climate information in the Pacific region

February’s climate

+  Tropical cyclone ‘Ivy’, the 2™ this season, brought damaging winds and
high intensity rainfall to parts of Vanuatu during 25 - 26* of February.

& The South Pacific Convergence Zone (SPCZ) was located further south than usual
in many areas, with above average rainfall over much of Fiji and the Southern
Cook Islands.

. An extensive region of below average rainfall occurred from Western Kiribati to the
Tuamotu Island, including Pitcair Island.
10,

Outgoing Long-wave Radiation (OLR) anomalies, in Wm? are represented by hatched areas, and rainfall
percentage of average, shown by numbers. High radiation levels (yellow) are typically associated with clearer
skies and lower rainfall, while cloudy conditions lower the OLR (blue) and typically mean higher rainfalls. The
February 2004 position of the South Pacific Convergence Zone (SPCZ), as identified from total rainfall, is
indicated by the solid green line. The average position of the SPCZ is identified by the dashed green line.

ENSO and sea surface temperatures
. The February Southern Oscillation Index (SOI) was +0.7. The equatorial Pacific remains

in a neutral El Nifio Southern Oscillation (ENSO) state.

+  Sea surface temperatures (SST) are well above average in the southwest

The next three months March to May 2004

*  Suppressed convection in the Eastern Pacific is likely to result in average or below
average rainfall in the Tuamotu Islands and Pitcaim Island, and below average
over the Marquesas Islands.

+  Above average or average rainfall is expected over Western Kiribati, Vanuatu, the
Wallis and Futuna Islands and the Society Islands.

New Zealand Agency for International Development
Nga Hoe Tuputupu-mal-tawhiti




I have known Tony for a long time while attending the CPC's Climate Diagnostics Workshops in the 1990s. | always enjoyed his presentation

not only because of the content of his updated research but also his clear, loud and convincing manner. Tony came to Honolulu for the Pacific

ENSO Applications Center workshop in 2004. He was the leader in the group for ENSO forecasts and whatever he said always seemed to be the
final words in the workshop. He is also humble and open minded and really easy to talk to. At that time, he expressed an interest to come to Hawaii
to continue his research. If | had position available, | would have not hesitated to recruit him. As we all know, Tony is a prolific writer. Recently, | have
the fortune to read some of his more recent publications on ENSO forecasts. | was always struck by his new ideas in research and methodologies.
His writing, although lengthy, is easy to follow and very comprehensive.

Tony, | want to congratulate you for your retirement. If you are still interested in coming to Hawaii, please let me know.

--Prof. Pao-Shin Chu, Department of Meteorology University of Hawaii, Hawaii State Climatologist
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ABSTRACT

In this study, the sources and strengths of statistical short-term climate predictability for local surface climate
(temperature and precipitation) and 700-mb geopotential height in the Northern Hemisphere are explored at
all times of the year at lead times of up to one year. Canonical correlation analysis is the linear statistical
methodology employed. Predictor and predictand averaging periods of 1 and 3 months are used, with four
consecutive predictor periods, followed by a lead time and then a single predictand period. Predictor fields are
quasi-global sea surface (SST), Northern Hemisphere 700-mb height, and prior values of the pre-
dictand field itself. Cross-validation is used to obtain, to first order, uninflated skill estimates.

Results reveal mainly modest statistical predictive skill except for certain fields, locations, and times of the
year when predictability is far above chance expectation and good enough to be beneficial to appropriate users.
The time of year when skills are generally highest is January through April. Global SST is the most skill-
producing predictor field, perhaps because 1) the lower boundary condition is a more consistent influence on
climate on timescales of | to 3 months than the atmosphere’s internal dynamics, or 2) SST is the only field in
this study that provides tropical information directly. Prediction is generally more skillful on the 3-month than
I-month timescale. The skill of the forecasts is often insensitive to the forecast lead time; that is, inserting 3, or
sometimes 6 or more, months between the predictor and predictand periods causes little skill decrease from
that of | month or less. This has favorable implications for long-lead forecasting.

Much of the higher skill occurs in association with fluctuations of the EI Nifio/Southern Oscillation (ENSO)
and is found in midwinter through midspring in specific pockets of the Pacific and North American regions.
Predictive skill for precipitation is also found in the same context but is lower than that for 700-mb height or
temperature,

Warm season predictability, slightly lower than that of winter-spring and not clearly documented in earlier
work, is related to episodes of like-signed SST anomalies in the tropical oceans throughout the world in the
preceding months. There is an interdecadal component in the variability of these global SST conditions. Gen-
eralized positive (negative) 700-mb and surface temperature anomalies in middle to late summer (but fall in
southern Europe), generally at subtropical latitudes throughout much of the Northern Hemisphere (but with
some midlatitude continental protrusions), occur following episodes of uniformly positive (negative) SST anom-
alies in the tropical oceans throughout the world in the preceding winter through late spring. The occurrence
of a mature warm (cold) ENSO extreme the previous winter may contribute to such a worldwide SST condition
in the intervening spring season. In the United States, the effect is a general (monopole) anomalous warmth
(coolness) from mid-July through August across much of the country.

1. Introduction
a. Motivation and background

In this study, a multivariate linear statistical model
is used to describe predictive relationships between
evolving large-scale patterns in the Northern Hemi-
sphere (NH) 700-mb circulation and near-global sea
surface temperature (SST) fields (predictors), and sub-
sequent patterns in the NH 700-mb circulation and
United States and European surface temperature and/
or precipitation. A lead interval of varying length is
placed between a series of consecutive predictor periods
and a single predictand period. Objective evaluation

Corresponding author address: Anthony G. Barnston, W/NMC51
WWB Room 604, Climate Prediction Center, Washington, DC 20233.

of the strength of such relationships is a primary mo-
tivation underlying the work.

Statistical analyses provide empirical knowledge that
can lead to more skillful forecasts in the absence of
explicit physical understanding. Additionally, the in-
formation may provide guidance toward identification
of the physical processes contributing to or limiting the
predictability. The choice to use an empirical approach
reflects the fact that both simple and complex general
circulation models (GCMs), either with prescribed
boundary conditions or with actual oceanic coupling,
currently do not adequately reproduce the processes
of the real atmosphere at the lead times and averaging
periods of concern here (Shukla 1985; Livezey 1990
Brankovic et al. 1990; Milton 1990). Limitations in
numerical approaches may be due, first, to inherent
limits in predictability using initial conditions to in-
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Greatly appreciate Tony’s help and work to set up a climate forecast system for
Hawaii and USAPI. Wishing you all the best in your new retired life!!!
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